First-passage time of run-and-tumble particles.

نویسندگان

  • L Angelani
  • R Di Leonardo
  • M Paoluzzi
چکیده

We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force fields and chemotactic fields, giving rise to space-dependent swim speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies --constant and sinusoidal force fields, constant gradient chemotactic field. Reported findings can be useful to get insights into very different phenomena involving active particles, such as bacterial motion in external fields, intracellular transport, cell migration, animal foraging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Brownian particles and run-and-tumble particles separate inside a maze

A diverse range of natural and artificial self-propelled particles are known and are used nowadays. Among them, active Brownian particles (ABPs) and run-and-tumble particles (RTPs) are two important classes. We numerically study non-interacting ABPs and RTPs strongly confined to different maze geometries in two dimensions. We demonstrate that by means of geometrical confinement alone, ABPs are ...

متن کامل

Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.

We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the...

متن کامل

Effect of reorientation statistics on torque response of self-propelled particles.

We consider the dynamics of self-propelled particles subject to external torques. Two models for the reorientation of self-propulsion are considered: run-and-tumble particles and active Brownian particles. Using the standard tools of nonequilibrium statistical mechanics we show that the run and tumble particles have a more robust response to torques. This macroscopic signature of the underlying...

متن کامل

Run-and-tumble-like motion of active colloids in viscoelastic media

Run-and-tumblemotion is a prominent locomotion strategy employed bymany livingmicroorganisms. It is characterized by straight swimming intervals (runs), which are interrupted by sudden reorientation events (tumbles). In contrast, directional changes of syntheticmicroswimmers (active particles) are caused by rotational diffusion, which is superimposedwith their translationalmotion and thus leads...

متن کامل

Statistical mechanics of interacting run-and-tumble bacteria.

We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add both interactions and noise, enabling discussion of domain formation by "self-trapping," and other collective phenomena. Mapping onto detailed-balance systems is possible in certain cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 37 7  شماره 

صفحات  -

تاریخ انتشار 2014